Skip to content

prefect.server.api.run_history

Utilities for querying flow and task run history.

run_history async

Produce a history of runs aggregated by interval and state

Source code in prefect/server/api/run_history.py
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
@db_injector
async def run_history(
    db: PrefectDBInterface,
    session: sa.orm.Session,
    run_type: Literal["flow_run", "task_run"],
    history_start: DateTimeTZ,
    history_end: DateTimeTZ,
    history_interval: datetime.timedelta,
    flows: schemas.filters.FlowFilter = None,
    flow_runs: schemas.filters.FlowRunFilter = None,
    task_runs: schemas.filters.TaskRunFilter = None,
    deployments: schemas.filters.DeploymentFilter = None,
    work_pools: schemas.filters.WorkPoolFilter = None,
    work_queues: schemas.filters.WorkQueueFilter = None,
) -> List[schemas.responses.HistoryResponse]:
    """
    Produce a history of runs aggregated by interval and state
    """

    # SQLite has issues with very small intervals
    # (by 0.001 seconds it stops incrementing the interval)
    if history_interval < datetime.timedelta(seconds=1):
        raise ValueError("History interval must not be less than 1 second.")

    # prepare run-specific models
    if run_type == "flow_run":
        run_model = db.FlowRun
        run_filter_function = models.flow_runs._apply_flow_run_filters
    elif run_type == "task_run":
        run_model = db.TaskRun
        run_filter_function = models.task_runs._apply_task_run_filters
    else:
        raise ValueError(
            f"Unknown run type {run_type!r}. Expected 'flow_run' or 'task_run'."
        )

    # create a CTE for timestamp intervals
    intervals = db.make_timestamp_intervals(
        history_start,
        history_end,
        history_interval,
    ).cte("intervals")

    # apply filters to the flow runs (and related states)
    runs = (
        await run_filter_function(
            sa.select(
                run_model.id,
                run_model.expected_start_time,
                run_model.estimated_run_time,
                run_model.estimated_start_time_delta,
                run_model.state_type,
                run_model.state_name,
            ).select_from(run_model),
            flow_filter=flows,
            flow_run_filter=flow_runs,
            task_run_filter=task_runs,
            deployment_filter=deployments,
            work_pool_filter=work_pools,
            work_queue_filter=work_queues,
        )
    ).alias("runs")
    # outer join intervals to the filtered runs to create a dataset composed of
    # every interval and the aggregate of all its runs. The runs aggregate is represented
    # by a descriptive JSON object
    counts = (
        sa.select(
            intervals.c.interval_start,
            intervals.c.interval_end,
            # build a JSON object, ignoring the case where the count of runs is 0
            sa.case(
                (sa.func.count(runs.c.id) == 0, None),
                else_=db.build_json_object(
                    "state_type",
                    runs.c.state_type,
                    "state_name",
                    runs.c.state_name,
                    "count_runs",
                    sa.func.count(runs.c.id),
                    # estimated run times only includes positive run times (to avoid any unexpected corner cases)
                    "sum_estimated_run_time",
                    sa.func.sum(
                        db.greatest(0, sa.extract("epoch", runs.c.estimated_run_time))
                    ),
                    # estimated lateness is the sum of any positive start time deltas
                    "sum_estimated_lateness",
                    sa.func.sum(
                        db.greatest(
                            0, sa.extract("epoch", runs.c.estimated_start_time_delta)
                        )
                    ),
                ),
            ).label("state_agg"),
        )
        .select_from(intervals)
        .join(
            runs,
            sa.and_(
                runs.c.expected_start_time >= intervals.c.interval_start,
                runs.c.expected_start_time < intervals.c.interval_end,
            ),
            isouter=True,
        )
        .group_by(
            intervals.c.interval_start,
            intervals.c.interval_end,
            runs.c.state_type,
            runs.c.state_name,
        )
    ).alias("counts")

    # aggregate all state-aggregate objects into a single array for each interval,
    # ensuring that intervals with no runs have an empty array
    query = (
        sa.select(
            counts.c.interval_start,
            counts.c.interval_end,
            sa.func.coalesce(
                db.json_arr_agg(db.cast_to_json(counts.c.state_agg)).filter(
                    counts.c.state_agg.is_not(None)
                ),
                sa.text("'[]'"),
            ).label("states"),
        )
        .group_by(counts.c.interval_start, counts.c.interval_end)
        .order_by(counts.c.interval_start)
        # return no more than 500 bars
        .limit(500)
    )

    # issue the query
    result = await session.execute(query)
    records = result.mappings()

    # load and parse the record if the database returns JSON as strings
    if db.uses_json_strings:
        records = [dict(r) for r in records]
        for r in records:
            r["states"] = json.loads(r["states"])

    return pydantic.parse_obj_as(List[schemas.responses.HistoryResponse], list(records))