prefect.engine
¶
Client-side execution and orchestration of flows and tasks.
Engine process overview¶
Flows¶
-
The flow is called by the user or an existing flow run is executed in a new process.
See
Flow.__call__
andprefect.engine.__main__
(python -m prefect.engine
) -
A synchronous function acts as an entrypoint to the engine. The engine executes on a dedicated "global loop" thread. For asynchronous flow calls, we return a coroutine from the entrypoint so the user can enter the engine without blocking their event loop.
See
enter_flow_run_engine_from_flow_call
,enter_flow_run_engine_from_subprocess
-
The thread that calls the entrypoint waits until orchestration of the flow run completes. This thread is referred to as the "user" thread and is usually the "main" thread. The thread is not blocked while waiting — it allows the engine to send work back to it. This allows us to send calls back to the user thread from the global loop thread.
See
wait_for_call_in_loop_thread
andcall_soon_in_waiting_thread
-
The asynchronous engine branches depending on if the flow run exists already and if there is a parent flow run in the current context.
See
create_then_begin_flow_run
,create_and_begin_subflow_run
, andretrieve_flow_then_begin_flow_run
-
The asynchronous engine prepares for execution of the flow run. This includes starting the task runner, preparing context, etc.
See
begin_flow_run
-
The flow run is orchestrated through states, calling the user's function as necessary. Generally the user's function is sent for execution on the user thread. If the flow function cannot be safely executed on the user thread, e.g. it is a synchronous child in an asynchronous parent it will be scheduled on a worker thread instead.
See
orchestrate_flow_run
,call_soon_in_waiting_thread
,call_soon_in_new_thread
Tasks¶
-
The task is called or submitted by the user. We require that this is always within a flow.
See
Task.__call__
andTask.submit
-
A synchronous function acts as an entrypoint to the engine. Unlike flow calls, this will not block until completion if
submit
was used.See
enter_task_run_engine
-
A future is created for the task call. Creation of the task run and submission to the task runner is scheduled as a background task so submission of many tasks can occur concurrently.
See
create_task_run_future
andcreate_task_run_then_submit
-
The engine branches depending on if a future, state, or result is requested. If a future is requested, it is returned immediately to the user thread. Otherwise, the engine will wait for the task run to complete and return the final state or result.
See
get_task_call_return_value
-
An engine function is submitted to the task runner. The task runner will schedule this function for execution on a worker. When executed, it will prepare for orchestration and wait for completion of the run.
See
create_task_run_then_submit
andbegin_task_run
-
The task run is orchestrated through states, calling the user's function as necessary. The user's function is always executed in a worker thread for isolation.
See
orchestrate_task_run
,call_soon_in_new_thread
_Ideally, for local and sequential task runners we would send the task run to the user thread as we do for flows. See #9855.
begin_flow_run
async
¶
Begins execution of a flow run; blocks until completion of the flow run
- Starts a task runner
- Determines the result storage block to use
- Orchestrates the flow run (runs the user-function and generates tasks)
- Waits for tasks to complete / shutsdown the task runner
- Sets a terminal state for the flow run
Note that the flow_run
contains a parameters
attribute which is the serialized
parameters sent to the backend while the parameters
argument here should be the
deserialized and validated dictionary of python objects.
Returns:
Type | Description |
---|---|
State
|
The final state of the run |
Source code in prefect/engine.py
465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 |
|
begin_task_map
async
¶
Async entrypoint for task mapping
Source code in prefect/engine.py
1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 |
|
begin_task_run
async
¶
Entrypoint for task run execution.
This function is intended for submission to the task runner.
This method may be called from a worker so we ensure the settings context has been entered. For example, with a runner that is executing tasks in the same event loop, we will likely not enter the context again because the current context already matches:
main thread:
--> Flow called with settings A
--> begin_task_run
executes same event loop
--> Profile A matches and is not entered again
However, with execution on a remote environment, we are going to need to ensure the settings for the task run are respected by entering the context:
main thread:
--> Flow called with settings A
--> begin_task_run
is scheduled on a remote worker, settings A is serialized
remote worker:
--> Remote worker imports Prefect (may not occur)
--> Global settings is loaded with default settings
--> begin_task_run
executes on a different event loop than the flow
--> Current settings is not set or does not match, settings A is entered
Source code in prefect/engine.py
1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 |
|
collect_task_run_inputs
async
¶
This function recurses through an expression to generate a set of any discernible task run inputs it finds in the data structure. It produces a set of all inputs found.
Examples:
>>> task_inputs = {
>>> k: await collect_task_run_inputs(v) for k, v in parameters.items()
>>> }
Source code in prefect/engine.py
1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 |
|
create_and_begin_subflow_run
async
¶
Async entrypoint for flows calls within a flow run
Subflows differ from parent flows in that they - Resolve futures in passed parameters into values - Create a dummy task for representation in the parent flow - Retrieve default result storage from the parent flow rather than the server
Returns:
Type | Description |
---|---|
Any
|
The final state of the run |
Source code in prefect/engine.py
573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 |
|
create_then_begin_flow_run
async
¶
Async entrypoint for flow calls
Creates the flow run in the backend, then enters the main flow run engine.
Source code in prefect/engine.py
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 |
|
enter_flow_run_engine_from_flow_call
¶
Sync entrypoint for flow calls.
This function does the heavy lifting of ensuring we can get into an async context for flow run execution with minimal overhead.
Source code in prefect/engine.py
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 |
|
enter_flow_run_engine_from_subprocess
¶
Sync entrypoint for flow runs that have been submitted for execution by an agent
Differs from enter_flow_run_engine_from_flow_call
in that we have a flow run id
but not a flow object. The flow must be retrieved before execution can begin.
Additionally, this assumes that the caller is always in a context without an event
loop as this should be called from a fresh process.
Source code in prefect/engine.py
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 |
|
enter_task_run_engine
¶
Sync entrypoint for task calls
Source code in prefect/engine.py
1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 |
|
get_state_for_result
¶
Get the state related to a result object.
link_state_to_result
must have been called first.
Source code in prefect/engine.py
2401 2402 2403 2404 2405 2406 2407 2408 2409 |
|
link_state_to_result
¶
Caches a link between a state and a result and its components using
the id
of the components to map to the state. The cache is persisted to the
current flow run context since task relationships are limited to within a flow run.
This allows dependency tracking to occur when results are passed around.
Note: Because id
is used, we cannot cache links between singleton objects.
We only cache the relationship between components 1-layer deep. Example: Given the result [1, ["a","b"], ("c",)], the following elements will be mapped to the state: - [1, ["a","b"], ("c",)] - ["a","b"] - ("c",)
Note: the int `1` will not be mapped to the state because it is a singleton.
Other Notes: We do not hash the result because: - If changes are made to the object in the flow between task calls, we can still track that they are related. - Hashing can be expensive. - Not all objects are hashable.
We do not set an attribute, e.g. __prefect_state__
, on the result because:
- Mutating user's objects is dangerous.
- Unrelated equality comparisons can break unexpectedly.
- The field can be preserved on copy.
- We cannot set this attribute on Python built-ins.
Source code in prefect/engine.py
2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 |
|
orchestrate_flow_run
async
¶
Executes a flow run.
Note on flow timeouts
Since async flows are run directly in the main event loop, timeout behavior will
match that described by anyio. If the flow is awaiting something, it will
immediately return; otherwise, the next time it awaits it will exit. Sync flows
are being task runner in a worker thread, which cannot be interrupted. The worker
thread will exit at the next task call. The worker thread also has access to the
status of the cancellation scope at FlowRunContext.timeout_scope.cancel_called
which allows it to raise a TimeoutError
to respect the timeout.
Returns:
Type | Description |
---|---|
State
|
The final state of the run |
Source code in prefect/engine.py
733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 |
|
orchestrate_task_run
async
¶
Execute a task run
This function should be submitted to an task runner. We must construct the context here instead of receiving it already populated since we may be in a new environment.
Proposes a RUNNING state, then - if accepted, the task user function will be run - if rejected, the received state will be returned
When the user function is run, the result will be used to determine a final state
- if an exception is encountered, it is trapped and stored in a FAILED state
- otherwise, return_value_to_state
is used to determine the state
If the final state is COMPLETED, we generate a cache key as specified by the task
The final state is then proposed - if accepted, this is the final state and will be returned - if rejected and a new final state is provided, it will be returned - if rejected and a non-final state is provided, we will attempt to enter a RUNNING state again
Returns:
Type | Description |
---|---|
State
|
The final state of the run |
Source code in prefect/engine.py
1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 |
|
pause_flow_run
async
¶
Pauses the current flow run by blocking execution until resumed.
When called within a flow run, execution will block and no downstream tasks will run until the flow is resumed. Task runs that have already started will continue running. A timeout parameter can be passed that will fail the flow run if it has not been resumed within the specified time.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
flow_run_id |
UUID
|
a flow run id. If supplied, this function will attempt to pause
the specified flow run outside of the flow run process. When paused, the
flow run will continue execution until the NEXT task is orchestrated, at
which point the flow will exit. Any tasks that have already started will
run until completion. When resumed, the flow run will be rescheduled to
finish execution. In order pause a flow run in this way, the flow needs to
have an associated deployment and results need to be configured with the
|
None
|
timeout |
int
|
the number of seconds to wait for the flow to be resumed before failing. Defaults to 5 minutes (300 seconds). If the pause timeout exceeds any configured flow-level timeout, the flow might fail even after resuming. |
300
|
poll_interval |
int
|
The number of seconds between checking whether the flow has been resumed. Defaults to 10 seconds. |
10
|
reschedule |
bool
|
Flag that will reschedule the flow run if resumed. Instead of
blocking execution, the flow will gracefully exit (with no result returned)
instead. To use this flag, a flow needs to have an associated deployment and
results need to be configured with the |
False
|
key |
str
|
An optional key to prevent calling pauses more than once. This defaults to the number of pauses observed by the flow so far, and prevents pauses that use the "reschedule" option from running the same pause twice. A custom key can be supplied for custom pausing behavior. |
None
|
Source code in prefect/engine.py
946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 |
|
propose_state
async
¶
Propose a new state for a flow run or task run, invoking Prefect orchestration logic.
If the proposed state is accepted, the provided state
will be augmented with
details and returned.
If the proposed state is rejected, a new state returned by the Prefect API will be returned.
If the proposed state results in a WAIT instruction from the Prefect API, the function will sleep and attempt to propose the state again.
If the proposed state results in an ABORT instruction from the Prefect API, an error will be raised.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
state |
State
|
a new state for the task or flow run |
required |
task_run_id |
UUID
|
an optional task run id, used when proposing task run states |
None
|
flow_run_id |
UUID
|
an optional flow run id, used when proposing flow run states |
None
|
Returns:
Type | Description |
---|---|
State
|
a State model representation of the flow or task run state |
Raises:
Type | Description |
---|---|
ValueError
|
if neither task_run_id or flow_run_id is provided |
Abort
|
if an ABORT instruction is received from the Prefect API |
Source code in prefect/engine.py
2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 |
|
report_flow_run_crashes
async
¶
Detect flow run crashes during this context and update the run to a proper final state.
This context must reraise the exception to properly exit the run.
Source code in prefect/engine.py
2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 |
|
report_task_run_crashes
async
¶
Detect task run crashes during this context and update the run to a proper final state.
This context must reraise the exception to properly exit the run.
Source code in prefect/engine.py
2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 |
|
resolve_inputs
async
¶
Resolve any Quote
, PrefectFuture
, or State
types nested in parameters into
data.
Returns:
Type | Description |
---|---|
Dict[str, Any]
|
A copy of the parameters with resolved data |
Raises:
Type | Description |
---|---|
UpstreamTaskError
|
If any of the upstream states are not |
Source code in prefect/engine.py
2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 |
|
resume_flow_run
async
¶
Resumes a paused flow.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
flow_run_id |
the flow_run_id to resume |
required |
Source code in prefect/engine.py
1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 |
|
retrieve_flow_then_begin_flow_run
async
¶
Async entrypoint for flow runs that have been submitted for execution by an agent
- Retrieves the deployment information
- Loads the flow object using deployment information
- Updates the flow run version
Source code in prefect/engine.py
394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 |
|
suspend_flow_run
async
¶
Suspends a flow run by stopping code execution until resumed.
When suspended, the flow run will continue execution until the NEXT task is
orchestrated, at which point the flow will exit. Any tasks that have
already started will run until completion. When resumed, the flow run will
be rescheduled to finish execution. In order suspend a flow run in this
way, the flow needs to have an associated deployment and results need to be
configured with the persist_results
option.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
flow_run_id |
Optional[UUID]
|
a flow run id. If supplied, this function will attempt to suspend the specified flow run. If not supplied will attempt to suspend the current flow run. |
None
|
timeout |
Optional[int]
|
the number of seconds to wait for the flow to be resumed before failing. Defaults to 5 minutes (300 seconds). If the pause timeout exceeds any configured flow-level timeout, the flow might fail even after resuming. |
300
|
key |
Optional[str]
|
An optional key to prevent calling suspend more than once. This defaults to a random string and prevents suspends from running the same suspend twice. A custom key can be supplied for custom suspending behavior. |
None
|
Source code in prefect/engine.py
1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 |
|